

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 227 (2005) 187-196

www.elsevier.com/locate/molcata

Catalytic reduction of N₂O by various hydrocarbons over Fe-ZSM-5: nature and reactivity of carbonaceous deposits

T. Chaki^a, M. Arai^a, T. Ebina^b, M. Shimokawabe^{a,*}

^a Division of Materials Science and Engineering, Graduated School of Engineering, Hokkaido University, Sapporo 060-8628, Japan ^b National Institute of Advanced Industrial Science and Technology, Sendai 983-8551, Japan

> Received 28 June 2004; received in revised form 17 September 2004; accepted 30 September 2004 Available online 2 December 2004

Abstract

The catalytic reduction of dinitrogen monoxide (N₂O) by various hydrocarbons (CH₄, C₂H₄, C₂H₆, C₃H₆, C₃H₈) in the absence and presence of O₂ has been studied over Fe-ZSM-5 catalysts. These hydrocarbon reductants are phenomenologically divided into three groups, namely CH₄, C₃H₆, and others (C₂H₄, C₂H₆, C₃H₈), referred to as the C₂H₄ group. Two types of carbonaceous deposits (C α , C β) are formed on Fe-ZSM-5 during the reduction of N₂O by C₂ and C₃ hydrocarbons in the absence of O₂. In both cases of C₂H₄ and C₃H₆, the catalytic activity of Fe-ZSM-5 decreases with an increase in the amount of C α , while it is not affected by the presence of C β . The C α species is formed on Fe sites and the C β is mainly accumulated on the support. The formation of these carbonaceous deposits from the C₂H₄ group is suppressed by the presence of O₂ in the feed gas, and this promotes the catalytic reduction of N₂O. The amount and the chemical nature of C α formed in the cases of the C₂H₄ group and C₃H₆ are similar, while those of C β are significantly different. The reactivity of C β with O₂ should be different and this may be responsible for the difference in the effects of O₂ addition on the reduction of N₂O between the C₂H₄ group and C₃H₆. In the case of CH₄, a high stable conversion of N₂O is obtained irrespective of the presence and absence of O₂ because the carbonaceous deposits are scarcely accumulated on the catalyst.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Fe-ZSM-5; N2O reduction; Hydrocarbon; Carbonaceous deposit

1. Introduction

Dinitrogen monoxide (N₂O) is well known to be a greenhouse gas component and contribute to the catalytic destruction of ozone in the stratosphere [1]. Therefore, the removal of N₂O by suitable catalytic methods has been a very important subject in order to protect the global environment. Recently, several research groups have reported high catalytic performance of various metal ion-exchanged zeolites and other metal containing catalysts for decomposition [2–7] and reduction of N₂O with hydrocarbons [8–20], activated carbon [21–23], CO [24–27], and NH₃ [27,28]. In our previous work [13], the catalytic reduction of N₂O using CH₄

E-mail address: shimo@proc-ms.eng.hokudai.ac.jp

and C_3H_6 as reductants in the presence and absence of O_2 was studied with various metal ion-exchanged ZSM-5 catalysts. Pronounced activities were observed with Fe-ZSM-5, Pd-ZSM-5, and Pt-ZSM-5 catalysts, and no significant deactivation was detected with Fe-ZSM-5 in the presence of O₂, whereas the activities of Pt- and Pd-ZSM-5 decreased drastically by the presence of 5% O_2 . Segawa et al. [10–12] studied the selective reduction of N2O using C3H6 as a reductant and reported high reaction rates over Fe/MFI even in the presence of O₂ and H₂O. These authors assumed that the adsorption and protonation of C_3H_6 were important steps in the reduction of N₂O by C₃H₆ over Fe/MFI [11]. Kunimori and his co-workers [14-16] reported that ion-exchanged Fe-BEA and Fe/MFI show good performance in the selective catalytic reduction of N₂O by CH₄ and C₃H₆ in the presence of excess O₂. These authors [17,18] stated that the $CH_xO_v(a)$ species such as methoxy and formate species formed at initial steps of

^{*} Corresponding author. Fax: +81 11 706 7556.

⁽M. Shimokawabe).

 $^{1381\}text{-}1169/\$$ – see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2004.09.083

the reduction of N₂O by CH₄, and may play an important role in the activation/oxidation of CH₄. Zhu et al. [20] indicated that the activity of Cu- or Co-loaded activated carbon in N₂O conversion was higher than that of Cu/ZSM-5 or Co/ZSM-5, respectively. They [22,23] also investigated the role of O₂ in NO– and N₂O–carbon reactions and reported that the presence of O₂ greatly enhanced the NO–carbon reaction while it suppressed the N₂O–carbon reaction. However, little fundamental study has been concluded pertaining to the reduction of N₂O by carbon species including reaction intermediates in the presence of O₂ over metal-loaded zeolites.

Several research groups have reported the nature and the role of oxygen species in the oxidation of hydrocarbons over metal-exchanged zeolites, Li and Armor [29] studied Pdexchanged zeolites (ZSM-5, mordenite, and ferrierite) catalysts for CH₄ oxidation. They reported that Pd supported on these zeolites showed much higher activities than Pd/Al₂O₃ and suggested that extra-lattice oxygen atoms could be very active in the complete oxidation of CH₄ at low temperature. Panov et al. [30] proposed that a surface oxygen species, α-oxygen, generated in Fe-ZSM-5 under N2O decomposition exhibited high reactivity in oxidation of methane, benzene and CO. They concluded that (1) α -oxygen was formed on Fe-ZSM-5 but not on the other iron catalysts and that (2) it was produced upon N_2O decomposition but not upon O₂ adsorption. Sachtler et al. [31] identified the oxygen deposited by N2O decomposition on Fe/MFI by means of isotopic exchange technique. They suggested that $[Fe_2O_2]^{2+}$ type ions should be considered in addition to the mononuclear $[Fe=O]^{2+}$ ion as the oxo-species of dissociative N₂O adsorption on iron ions in partially pre-reduced and dehydrated Fe/MFI. However, little fundamental study has been made concerning the nature and the role of surface oxygen in the oxidation of hydrocarbons over Fe-zeolite catalysts.

Recently [32], we have reported that two types of carbonaceous deposits (C α , C β) are formed on Fe-ZSM-5 catalysts during the N₂O reduction by C_2H_4 in the absence of O_2 , and the catalytic activity decreases with an increase in the amount of C α formed. The C α species may be formed on the Fe sites. It was found that the catalytic reduction of N₂O by C_2H_4 is promoted by O_2 , which prevents the accumulation of carbonaceous deposits on Fe sites. These carbonaceous deposits were scarcely accumulated by supplying only C₂H₄ over Fe-ZSM-5 or N₂O-C₂H₄ mixture over Na-ZSM-5 parent zeolite; therefore, these carbonaceous deposits are formed through the reaction between N_2O and C_2H_4 over Fe sites. In the present study, the reduction of N₂O by various hydrocarbons (CH₄, C₂H₆, C₃H₆, C₃H₈) in addition to C₂H₄ in the presence and absence of O2 has been studied over Fe-ZSM-5. The reducing ability of the hydrocarbons has been discussed in terms of the accumulation of carbonaceous deposits on the catalyst. The nature and the structure of the carbonaceous deposits have been investigated by means of temperature-programmed oxidation (TPO) and X-ray photoelectron spectroscopy (XPS) analysis. The reactivity of the carbonaceous deposits and gaseous product (CO) with oxidant (O_2 , N_2O) has been also investigated to elucidate the role of O_2 in the oxidation of carbonaceous deposits.

2. Experimental

2.1. Catalyst preparation

Fe-ZSM-5 catalysts were prepared by a conventional ionexchange method using Na-ZSM-5 (SiO₂/Al₂O₃ = 23.8) supplied from Tosoh Co. Ltd. Na-ZSM-5 (4 g) was added to 100 cm³ of FeSO₄·7H₂O aqueous solution of 2.45×10^{-2} M and the resulting mixture was then stirred at 343 K for 12 h. After filtration, the metal-supported zeolites were washed with distilled water, dried at 383 K for 24 h, and calcined in air at 773 K for 3 h. The content of Fe loaded was fixed at 3.4 wt.%, corresponding to 100% ion-exchangeable level.

2.2. N₂O reduction

The reaction was carried out in a conventional flow reactor at a W/F of 0.06 g s cm^{-3} and at 598 K. The reactor was made of 9 mm diameter Pyrex glass tubing in which a catalyst sample of 0.05 g was mounted on loosely packed quartz wool. Prior to the runs, the catalyst was treated in a stream of He at 773 K for 2 h and cooled to the reaction temperature.

The reactant gases used were N2O and a hydrocarbon of CH₄, C₂H₄, C₂H₆, C₃H₆, or C₃H₈ diluted by He. The concentration used for CH₄, C₂H₄, C₂H₆, C₃H₆, C₃H₈, and N₂O was 3000, 2000, 2000, 1300, 1300, and 2000 ppm, respectively. In our previous work [32], a 2000 ppm concentration of C_2H_4 was used. One mole of C_2H_4 is equivalent to six moles of O atoms if the following stoichiometry is assumed: $C + 2O \rightarrow CO_2$ and $H_2 + O \rightarrow H_2O$. The concentration of the other hydrocarbons was also adjusted to approximately have the same equivalent number of reducing C and H atoms. To examine the influence of O₂, it was introduced into the feed gas in different quantities up to 5%. The concentrations of N₂O, N₂, O₂, CO, CO₂, and hydrocarbons in the outflow gas were determined using gas chromatographs (Hitachi 663-50 and 063) with porapak Q and molecular sieve 5A columns. The concentration of NO₂ was monitored using a UV-vis spectrophotometer (Hitachi Model 100-10). Because of low concentrations of N₂O and hydrocarbons used, the total flow rate was practically constant throughout the catalyst bed.

2.3. Catalyst characterization

Temperature programmed oxidation experiments were carried out in the same reactor as used for the N₂O reduction. After the reaction, the reactor was cooled to room temperature, the stream of reactants was switched to He, and it was allowed to flow through for 60 min, and then programmed heating was started from room temperature to 773 K at a rate of 5 K min⁻¹ in the stream of 5000 ppm O₂ in He. The

amounts of gases (CO, CO₂) evolved were determined from the peak areas of TPO curves.

X-ray photoelectron spectroscopy (XPS) analysis was performed in a ULVAC PHI ESCA 5600 instrument. Al K α radiation (14.0 kV, 400 W) was used to excite photoelectrons, which were detected with an analyzer operated at 1253.6 eV constant pass energy. Correction of the energy shift due to steady state charging was accomplished by taking the C1s line from adsorbed carbons at 284.5 eV as an internal standard.

3. Results and discussion

3.1. N₂O reduction by various hydrocarbons

Fig. 1 shows the conversion of N_2O to N_2 as a function of reaction time in the reduction of N_2O (2000 ppm) by various hydrocarbons, CH₄ (3000 ppm), C₂H₄ (2000 ppm), C₂H₆ (2000 ppm), C₃H₆ (1300 ppm), or C₃H₈ (1300 ppm), in the absence and presence of O₂ (5000 ppm) over Fe-ZSM-5 at 598 K. These hydrocarbon reductants are phenomenologically divided into three groups, namely CH₄, C₃H₆, and others (C₂H₄, C₂H₆, C₃H₈), referred to as the C₂H₄ group. When CH₄ was employed for the reductant in the absence of O₂ (Fig. 1a), a stable conversion higher than 90% was observed during the reaction. On the other hand, when C₂H₄, C₂H₆, C₃H₆ and C₃H₈ were used, the conversions of N₂O decreased rapidly with time on stream at the initial stage of reaction and then changed gradually to steady-state values

Fig. 1. The catalytic reduction of N₂O (2000 ppm) by hydrocarbons in the absence (a) and presence (b) of O₂ (5000 ppm) over Fe-ZSM-5 at 598 K. (\Box) CH₄ (3000 ppm); (\bullet), C₂H₄ (2000 ppm); (\bigcirc), C₂H₆ (2000 ppm); (\blacktriangle), C₃H₆ (1300 ppm); (\triangle), C₃H₆ (1300 ppm); (\triangle), C₃H₈ (1300 ppm).

depending on the reductants used. As described in our previous report [32], the reduction of N_2O by C_2H_4 was strongly inhibited by formation of the carbonaceous deposits on the catalyst. The decrease in the conversion of N_2O observed with the other hydrocarbons could be also explained on the basis of the accumulation of carbonaceous deposits on the catalyst. When O_2 (5000 ppm) was added (Fig. 1b), the N_2O conversion rapidly decreased from about 95 to 75% and remained at around 75% in the N_2O reduction by C_2H_4 , C_2H_6 and C_3H_8 in addition to CH_4 . For C_3H_6 , the N_2O conversion to N_2 also decreased rapidly at the initial stage of reaction but, in contrast, it then decreased gradually with time on stream. The influence of O_2 is significantly different between C_3H_6 and the other hydrocarbons.

3.2. Formation and influence of carbonaceous deposits on the activity of catalyst

TPO was used to characterize chemical species formed on the surface of catalyst after N₂O reduction. Fig. 2 shows TPO profiles after N₂O reduction over Fe-ZSM-5 by hydrocarbons, CH₄, C₂H₄, C₂H₆, C₃H₆, or C₃H₈, in the absence of O₂ at 598 K for 2 h. CO and CO₂ were observed to evolve along with a trace amount of H₂O. When CH₄ was used, CO and CO_2 were scarcely evolved. When C_2H_4 , C_2H_6 , C_3H_6 , or C3H8 was used, the evolution peak of CO appeared at approximately 570 K and CO₂ peaks appeared at approximately 570 and around 670 K. The peaks centered at temperatures of 570 and 670 K are henceforth referred to as α - and β -peak, respectively. These TPO results show the formation and accumulation of carbonaceous deposits on the catalyst during the N₂O reduction by C₂ and C₃ hydrocarbons. In our previous work [32], we classified the carbonaceous deposits formed during N₂O reduction by C₂H₄ into two types by their reactivity with O_2 in TPO, and the carbonaceous deposits evolved

Fig. 2. TPO curves of carbonaceous deposits accumulated over Fe-ZSM-5 during N₂O (2000 ppm) reduction by hydrocarbons at 598 K for 2 h in the absence of O₂ ((\bigcirc) CO; (\blacktriangle) CO₂).

Fig. 3. TPO curves of carbonaceous deposits accumulated over Fe-ZSM-5 during N₂O (2000 ppm) reduction by hydrocarbons at 598 K for 2 h in the presence of O₂ (5000 ppm) ((\bigcirc) CO; (\blacktriangle) CO₂).

as CO₂ and/or CO at α - and β -peak regions were named C α and C β , respectively.

The influence of addition of O_2 into the feed gas was also investigated by TPO. Fig. 3 shows TPO curves of the carbonaceous deposits accumulated over Fe-ZSM-5 during the reduction of N₂O by hydrocarbons at 598 K for 2 h in the presence of O_2 . In this study, as described in Section 2.2, the quantities of hydrocarbons used were approximately the same with respect to the quantities of such reducing species as C and H included; for example, 2000 ppm C₂H₄ and 1300 ppm C₃H₆ were used. The concentration of the other hydrocarbons was also adjusted to approximately have the same equivalent number of reducing atoms. If these inlet gaseous reactants react with each other completely, the stoichiometry of the reaction, for C₂H₄ for example, would be:

$$N_2O + C_2H_4 + 5/2O_2 \rightarrow N_2 + 2CO_2 + 2H_2O$$
 (1)

In this case, for example, 2000 ppm N₂O, 2000 ppm C₂H₄ and 5000 ppm O₂ give the stoichiometric composition and no accumulation of carbonaceous deposit may occur as expected by the Eq. (1). Under these conditions, when CH₄, C₂H₄, C₂H₆ and C₃H₈ were employed as the reductant, the evolution of CO and CO₂ was scarcely observed in the TPO runs. On the other hand, when C₃H₆ was used, β -peaks of evolution of CO and CO₂ were observed.

Table 1 summarizes the conversion of N_2O to N_2 obtained in the reduction of N_2O in the absence and presence of O_2 shown in Fig. 1 and the amounts of carbonaceous deposits ($C\alpha$, $C\beta$) determined by TPO shown in Figs. 2 and 3. As described previously [32], the accumulation of the carbonaceous deposits in the reduction of N_2O by C_2H_4 was suppressed and the catalytic reduction of N_2O was promoted by the presence of O_2 . In the cases of C_2H_6 and C_3H_8 , in a similar manner to C_2H_4 , the accumulation of carbonaceous deposits scarcely occurred and the high stable values of N_2O conversion were obtained in the presence of O_2 . When CH_4 was used, the high values of N_2O conversion were obtained regardless of the presence of O_2 , since the carbonaceous deposits were scarcely formed from CH_4 . When C_3H_6 was used, a considerable amount of $C\beta$ was accumulated exceptionally even in the presence of O_2 .

Fig. 2 and Table 1 indicate that two types of carbonaceous deposits were formed on the catalyst irrespective of the kinds of hydrocarbons used expect for CH₄. The saturated amounts of C α formed during the N₂O reduction in the absence of O₂ for 2 h were similar, 1.0–1.4 mmol g^{-1} , for C₂ and C₃, while those of C β were different. Previously, it was found that the composition of $C\alpha$ is represented by approximately CH and that the amount of C α formed on the Fe-ZSM-5 catalyst during N₂O reduction by C₂H₄ was saturated after 2 h (around 1.3 mmol g^{-1}). This saturated value, which corresponds to the C/Fe ratio of 2, did not depend on the reaction temperature and partial pressure of reactants [32]. Thus, it is presumed that the amount of $C\alpha$ formed during N₂O reduction by C_2 and C_3 hydrocarbons in the absence of O_2 are similar irrespective of the kinds of hydrocarbons and the reaction conditions employed.

Fig. 4 shows the changes in the conversion of N_2O to N_2 and the amounts of $C\alpha$ and $C\beta$ accumulated during N_2O reduction by CH₄, C_2H_4 , and C_3H_6 in the absence of O_2 . In the case of CH₄, a stable N_2O conversion higher than 90% was observed as shown in Fig. 1a and Table 1, and little deposition of carbonaceous material was observed during the reaction. In both cases of C_2H_4 , and C_3H_6 , the conversion of

Fig. 4. Conversion of N_2O to N_2 and amounts of $C\alpha$ and $C\beta$ accumulated over Fe-ZSM-5 during the reduction N_2O (2000 ppm) by: (a) CH₄ (3000 ppm); (b) C₂H₄ (2000 ppm); and (c) C₃H₆ (1300 ppm) at 598 K ((\Box), conversion of N_2O to N_2 ; (\bullet), C α ; (\bullet), C β).

Table 1

The amount of carbonaceous deposits accumulated over Fe-ZSM-5 during the reduction of N_2O by hydrocarbons at 598 K for 2 h

Reactant (ppm)			Conversion (%)	Amount of carbonaceous deposits (mmol g^{-1} cat.)	
Hydrocarbon	N ₂ O	O ₂	N ₂ O to N ₂	Са	Сβ
CH ₄ (3000)	2000	0	93.6	0.14	0.04
	2000	5000	78.1	Trace	Trace
	12000	0	60.0	0.013	0.005
	0	0	_	0	0
C ₂ H ₄ (2000)	2000	0	38.7	1.39	1.85
	2000	5000	74.0	0.11	0.07
	12000	0	14.5	1.26	2.93
	0	0	_	0.07	0.09
C ₂ H ₆ (2000)	2000	0	58.7	1.00	1.41
	2000	5000	68.9	0.01	0
	0	0	_	0.002	0.005
C ₃ H ₆ (1300)	2000	0	28.6	1.46	2.12
	2000	5000	27.1	0	4.38
	12000	0	6.3	1.19	4.00
	0	0	_	0.63	0.18
C ₃ H ₈ (1300)	2000	0	47.2	1.24	1.99
	2000	5000	69.6	0.12	0.20
	0	0	-	0.03	0.01

Fe (3.4 wt.%)-ZSM-5: 0.05 g.

 N_2O decreases with time on stream, and this change corresponds well with an increase in the amount of C α . However, the amounts of C β increase linearly with time on stream for both C_2H_4 and C_3H_6 . Thus, it is probable that the reduction of N_2O is inhibited by the presence of C α ; the deactivation of Fe-ZSM-5 catalyst in the absence of O_2 is caused by the accumulation of C α on its surface.

3.3. Characterization of carbonaceous deposits

The nature of $C\alpha$ and $C\beta$ deposits was characterized by means of XPS. Fig. 5 shows XPS spectra of C1s for Fe-ZSM-5 used for the reduction of N_2O with C_3H_6 in the absence of O₂ at 598 K. Fig. 5 (1) shows the XPS spectra of the Fe-ZSM-5 catalyst before reaction as a background. The dotted and broken curves shown in Fig. 5 (2) and (3) represent deconvoluted spectra of the solid curves. Fig. 5 (2) shows the C1s spectrum after the reduction of N₂O for 15 min, in which the carbonaceous deposits formed on the catalyst were mostly C α along with a small quantity of C β . A peak at 283.6 eV displayed by a broken line may indicate the formation of an isolated carbon [33], and $C\alpha$ can be regarded as carbonaceous species with the isolated carbon. Another small peak at 286.0 eV may be assigned to alcoholic groups [33] and could be due to the accumulation of C β . Fig. 5 (3) shows the C1s spectrum after the reduction of N2O for a longer time of 120 min. The peak at 286.0 eV obtained for 120 min is larger than that for 15 min. A shoulder peak appearing at 282.0 eV may be assigned to carbide [33]. C β species are formed on the catalyst for longer reaction time and, therefore, C β can be regarded as the carbonaceous species with carbide and alcoholic groups.

Previously [32], it was suggested that C α and C β formed over the Fe-ZSM-5 catalyst during the N₂O reduction by C₂H₄ were the carbonaceous species with isolated carbon and those with carboxylic groups, respectively, from XPS measurements. Furthermore, as described in Section 3.2, the amounts of C α formed in the cases of C₂H₄ and C₃H₆ were similar. Then, the chemical nature of C α obtained from C₃H₆ and C₂H₄ may be similar. On the other hand, in the case of C β from C₂H₄, little amount of carbide was observed by XPS and, thus, there may be a significant difference in the chemical

Fig. 5. XPS spectra of C1s for Fe-ZSM-5 catalyst before and after the reduction of N_2O (2000 ppm) by C_3H_6 (1300 ppm) in the absence of O_2 at 598 K. (1) Before reaction; (2) after 15 min; (3) after 120 min.

Table 2 Surface composition of Fe-ZSM-5 catalyst used for the reduction of N_2O (2000 ppm) by C_3H_6 (1300 ppm) in the absence of O_2 at 598 K as measured by XPS

Reaction time (min)	Type of C deposit	Content (at.%)			
		C	Fe	Si	
Before reaction	_	9.4	1.2	24.4	
15	Cα	12.1	0.84	24.8	
120	Cα, Cβ	18.2	0.68	22.5	

nature of C β between C₂H₄ and C₃H₆. The reactivity of C β with O₂ should be different and this may be responsible for the difference in the effects of O₂ addition on the reduction of N₂O between C₃H₆ and C₂H₄ (Fig. 1).

The elemental compositions of surface of the catalyst were also examined by means of XPS. The relative amounts of surface carbon, iron and silicon after the reduction of N₂O by C_3H_6 are listed in Table 2. It is seen that the C content increased with an increase in the reaction time and, in contrast, the Fe content decreased. The C α species, which was mainly formed at the initial stage of N₂O reduction, may be accumulated on the Fe site, since the Fe content decreased by the formation of C α while the Si content remained almost unaltered. On the other hand, C β species may be accumulated on the support, ZSM-5 zeolite, since the Si content decreased by the appearance of C β for a longer time of 120 min. Concerning the site for the formation of C α and C β , these results with C₃H₆ agree with our previous results with C₂H₄ [32].

3.4. Influence of the partial pressure of O_2 on N_2O reduction

As described in Section 3.2, the deactivation of the Fe-ZSM-5 catalyst in the absence of O₂ was caused by the accumulation of $C\alpha$ on its surface and the catalytic reduction of N_2O was promoted by the presence of O_2 . The influence of the partial pressure of O2 on N2O reduction was further investigated. In Fig. 6, the amount of carbonaceous deposit and the partial pressure of N_2 , CO_x (CO and CO_2) formed in the reduction of N₂O with CH₄, C₂H₄, and C₃H₆ at 598 K for 2 h are plotted against the concentration of O₂ added. When CH₄ was employed as the reductant, a little amount of carbonaceous deposit was formed in the absence of O₂ but not in the presence of O_2 . The partial pressure of CO_x formed did not change markedly with the concentration of O₂. When C_2H_4 was employed, the amount of the carbonaceous deposit decreased rapidly with an increase in the concentration of O₂ between 0 and 0.5% and then it disappeared at O₂ concentrations above 1%. N₂O conversion obtained at O₂ concentrations below 0.1% was about 36%, while the value increased with an increase in the O_2 concentration up to 0.5%, at which a maximum value of 87.4% was obtained. The conversion of N_2O did not change with the concentration of O_2 above 1%. When C₃H₆ was employed, the amount of the carbonaceous deposit decreased with an increase in the concentration of O2,

Fig. 6. The effects of partial pressure of O_2 on the conversion of N_2O to N_2 and the amount of the carbonaceous deposits formed on Fe-ZSM-5 during the reduction of N_2O (2000 ppm) by: (a) CH₄ (3000 ppm); (b) C_2H_4 (2000 ppm); and (c) C_3H_6 (1300 ppm) at 598 K for 2 h. ((\Box), partial pressure of N_2 ; (\bigcirc), partial pressure of CO_x ; (\spadesuit), the amount of the carbonaceous deposit).

but a considerable quantity of the carbonaceous deposit still remained even at 5% O₂. The conversion of N₂O increased with an increase in the concentration of O₂ between 0.5 and 2%, and a maximum value of 49.2% was obtained at 2% O₂. The partial pressure of CO_x increased with an increase in the concentration of O₂ up to 2%, and the value did not change notably with the concentration of O₂ above 2%.

3.5. Reactivity of CO with O₂ and N₂O over Fe-ZSM-5

In the reduction of N₂O by various hydrocarbons, CO and CO₂ were produced. The conversion of CO and CO₂ was measured at various W/F (weight of catalyst/total flow rate of reactant gas) values to examine whether the formation of CO and CO₂ is either in parallel or in a consecutive manner. It was found that CO₂ might be mainly formed through CO consecutively. Then, the reactivity of CO with N₂O and O₂ was further investigated over Fe-ZSM-5 at 598 K to elucidate the role of CO in the reduction of N₂O in the presence of O₂. In Fig. 7, the reactivity of CO with N₂O in the absence and presence of O₂ is compared with that of CO with O₂. When N₂O was reacted with CO in the absence of O₂, N₂O

Fig. 7. The influence of partial pressure of O_2 on the conversion of N_2O to N_2 and CO to CO_2 in the reaction between N_2O (2000 ppm) and CO (2000 ppm) or O_2 and CO (2000 ppm) at 598 K for 2 h. ((\Box), conversion of N_2O to N_2 ; (Δ), conversion of CO to CO_2 in the reaction between N_2O and CO; (\blacktriangle), conversion of CO to CO_2 in the reaction between O_2 and CO).

conversion was about 53%, while the value decreased about 10% by addition of 0.1% O_2 and further decreased gradually with an increase in the concentration of O_2 up to 5%. The total conversion of CO to CO_2 obtained in the reaction between CO and N_2O in the presence of O_2 , however, did not change so much, since the decrease in the CO oxidation contributed by N_2O was compensated by addition of O_2 . On the other hand, the conversion of CO to CO_2 in the reaction between CO and O_2 without N_2O was considerably low and slightly increased with an increase in the partial pressure of O_2 . On the basis of these findings, it is presumed that N_2O is reduced easily by CO even in the presence of O_2 over Fe-ZSM-5.

3.6. Reactivity of O_2 and N_2O for various hydrocarbons

As previously noted in Table 1 and Figs. 1 and 2, most of the carbonaceous deposits were consumed by the reaction with stoichiometric composition of O_2 . In order to compare the reactivity of N₂O with that of O₂ on the oxidative consumption of carbonaceous deposits, the stoichiometric composition of N2O (12,000 ppm) was introduced in the place of the mixture of N₂O (2000 ppm) and O₂ (5000 ppm) for the reaction with CH_4 , C_2H_4 , and C_3H_6 , and the results are also shown in Table 1. When C_2H_4 and C_3H_6 were used, a similar amount of carbonaceous deposits accumulated in spite of high partial pressures of N₂O (2000 and 12,000 ppm). This suggests that the carbonaceous deposits are unlikely to react with N₂O even at 12,000 ppm. In both cases, however, it was observed that $C\alpha$ decreased slightly and $C\beta$ increased apparently in the reaction with higher partial pressure N2O. Particularly, in the case of C_3H_6 , a large quantity of CB accumulated in the reaction with 12,000 ppm N₂O. Then, only hydrocarbon was provided over Fe-ZSM-5 to investigate the role of oxidant in the formation of carbonaceous deposits on the catalyst surface. Table 1 also summarizes the amount of carbonaceous deposits formed by providing of CH₄, C₂H₄, C₂H₆, C₃H₆, or C₃H₈ without oxidants. The formation of Table 3

The amount of carbonaceous deposits accumulated over Fe-ZSM-5 during the reaction between O_2 and hydrocarbons at 598 K for 2 h

Reactant (ppm)		Amount of carbonaceous deposits (mmol g^{-1} cat.)		
Hydrocarbon	O ₂	Γα	Сβ	
CH ₄ (3000)	1000	0	0	
	6000	0	0	
C ₂ H ₄ (2000)	1000	0	0.99	
	6000	0.07	0.12	
C ₃ H ₆ (1300)	1000	0	6.29	
	6000	0	6.38	

Fe (3.4 wt.%)-ZSM-5: 0.05 g.

carbonaceous deposits ($C\alpha$, $C\beta$) scarcely occurred without oxidants by providing hydrocarbons except C_3H_6 . It is presumed that oxidants are necessary to accumulate the carbonaceous deposits on the catalyst. Most of carbonaceous deposits formed without gaseous oxidants might be produced by the reaction between hydrocarbon and the surface oxygen of catalyst. Only in the case of C_3H_6 , one-half of saturated value of $C\alpha$ may be formed by adsorption without oxidants.

The role of O_2 in the formation and the oxidation of carbonaceous deposits ($C\alpha$, $C\beta$) were further investigated by reactions between hydrocarbons and O_2 without N_2O , and the results are shown in Table 3. In these experiments, 1000 or 6000 ppm of O_2 was introduced in place of 2000 or 12,000 ppm N_2O . When CH₄ was used, no carbonaceous deposit formed on Fe-ZSM-5. On the other hand, when C_3H_6 was employed, the formation of a considerable extent of $C\beta$ was observed, while little amount of $C\alpha$ was formed. It is presumed that the presence of N_2O is necessary for the formation of the $C\alpha$ type carbonaceous deposit is reactive with O_2 . Actually Kameoka et al. [16,17] stated that the presence of N_2O is necessary for the initial activation of hydrocarbons.

Table 4 summarizes the amount of reactants (hydrocarbon, N₂O, and O₂) consumed and those of products (CO, CO_2 , C_2H_4 , and C_3H_6) formed in the reduction of N₂O by CH₄, C₂H₄, C₂H₆, C₃H₆, or C₃H₈, over Fe-ZSM-5 at 598 K. These values were obtained at the steady state in the same experiments as shown in Tables 1 and 3 and summarized to elucidate the influence of the partial pressure of N₂O and O_2 on the basis of the carbon balance values between the gaseous reactants and products. The last column of Table 4 shows the contribution of N₂O in the total amount of the reacted agents $(N_2O + O_2)$. Yoshida et al. [19] reported the value of (consumed N_2O)/(3CO + 4CO₂) to represent the ratio of the consumption rate of N₂O to the formation rate of $(3CO + 4CO_2)$ for the reduction of N₂O by CH₄. In this case, $(3CO + 4CO_2)$ represents the total amount of oxidizing agents assuming the equations: $CH_4 + 4[O] \rightarrow CO_2 + 2H_2O_1$ $CH_4 + 3[O] \rightarrow CO + 2H_2O$. [O] is oxygen atom originating from N₂O and O₂. Similarly the contribution of N₂O in the total amount of the oxidizing agents reacted (N_2O+O_2) are represented by the values of (consumed

Table 4 The reduction of N_2O by hydrocarbons over Fe-ZSM-5 at 598 K for 2 h

Reactant (ppm)		Amount of reactants consumed (ppm)		Amount of products formed (ppm)				Contribution		
Hydrocarbon	N ₂ O	O ₂	Hydrocarbon	N ₂ O	0 ₂	СО	CO ₂	C_2H_4	C ₃ H ₆	of $N_2 O^a$
CH ₄ (3000)	2000	_	501	1872	_	348	153	0	0	1.13
	2000	5000	549	1562	605	219	330	0	0	0.79
	12000	-	1944	7200	-	588	1329	0	0	1.02
	_	1000	0	-	0	0	0	0	0	_
	-	6000	0	-	0	0	0	0	0	-
C ₂ H ₄ (2000)	2000	_	394	774		56	104		0	1.83
	2000	5000	1942	1480	4040	2232	1660	_	0	0.17
	12000	_	638	1740	-	128	308	_	0	1.47
	_	1000	384	-	804	348	236	_	0	_
	-	6000	946	-	2034	1176	572	-	0	-
C ₂ H ₆ (2000)	2000	_	510	1174	_	72	100	164	0	222
	2000	5000	1290	1378	3175	1280	1240	30	0	0.18
C ₃ H ₆ (1300)	2000	_	484	572	_	27	47	33	_	2.93
	2000	5000	1114	542	2510	749	878	Trace	_	0.13
	12000	_	229	756	-	39	82	0	_	2.33
	_	1000	635	-	1000	105	174	17	_	_
	-	6000	1210	-	3050	958	901	14	-	-
C ₃ H ₈ (1300)	2000	_	378	944	_	43	66	12	120	2.95
	2000	5000	1192	1392	3350	1576	1287	0	0	0.17

Fe (3.4 wt.%)-ZSM-5: 0.05 g.

^a Normalized contribution of N₂O in the reaction between N₂O and hydrocarbon in the presence of O₂ [19]; CH₄: (consumed N₂O)/(3CO + 4CO₂); C₂H₄: (consumed NO)/(2CO + 3CO₂); C₂H₆: (consumed N₂O)/(5/2CO + 7/2CO₂); C₃H₆: (consumed NO)/(2CO + 3CO₂); C₃H₈: (consumed N₂O)/(7/3CO + 10/3CO₂).

 N_2O /(2CO + 3CO₂), (consumed N_2O)/(5/2CO + 7/2CO₂), and (consumed N_2O)/(7/3CO + 10/3CO₂) for the reduction of N_2O by C_2H_4 and C_3H_6 , C_2H_6 , and C_3H_8 , respectively.

When CH₄ was used, no reaction occurred with O₂ (1000 or 6000 ppm) over Fe-ZSM-5 and most of CO and CO₂ was formed by the reaction between CH₄ and N₂O (2000 or 12,000 ppm). The total amounts of CO_x (CO and CO₂) were slightly increased by addition of O₂ (5000 ppm), while the amount of CO₂ formation increased apparently according to the oxidation of CO by O₂. Actually the contribution of N₂O obtained in the reduction of N₂O by CH₄ in the absence of O₂ is almost unity, while it slightly decreased to 0.79 in the presence of O₂. This suggests that most of CO and CO₂ was formed by the reaction between CH₄ and N₂O (2000 or 12,000 ppm) in the absence of O₂ and CO₂ was further formed by the oxidation of CO with additional O₂.

On the other hand, when C_2H_4 , C_2H_6 , and C_3H_8 were used, N_2O and O_2 were well reacted over Fe-ZSM-5 with hydrocarbons and produced equivalent amount of gaseous carbon oxides. However, when only N_2O was used as oxidant, the amount of gaseous carbon oxides was less than that of hydrocarbons consumed and the differences of carbon species could be due to the formation of carbonaceous deposits. When C_3H_6 was used, considerable amounts of carbon species remained on the catalyst even in the presence of O_2 . Actually the contribution of N_2O obtained for the reduction of N_2O by C_2 and C_3 hydrocarbons in the absence of O_2 is 1.83–2.95, and only 0.13–0.18 in the presence of O_2 . This suggests that significant amounts of carbonaceous deposits may be formed on the surface of catalyst when C_2 and C_3 hydrocarbons were used for the reduction of N_2O in the absence of O_2 .

3.7. Reaction scheme for SCR of N_2O by hydrocarbons over Fe-ZSM-5

On the basis of the findings mentioned above, hydrocarbon reductants are phenomenologically divided into three groups, namely CH_4 , C_3H_6 , and others (C_2H_4 , C_2H_6 , C_3H_8), referred to as the C_2H_4 group and we propose the possible reaction scheme for each group as shown in Scheme 1.

In the initial stage, N₂O decomposes to produce N₂ and Os, active nascent oxygen, Eq. (2). When CH₄ is employed, CH₄ is hardly adsorbed on Fe-ZSM-5. Kunimori and his coworkers [17–19] have reported that nascent oxygen originating from N₂O decomposition could play an important role in the activation of methane. In this case, Os is thus reduced by CH_4 to produce CH_2^*s and H_2O , Eq. (3), and CH_2^*s may be very active and reacted instantaneously with N2O or O2 to produce CH₂Os and N₂ or CO and H₂O, respectively, Eqs. (4) and (5). As shown in Fig. 1, the steady state conversion of N₂O to N₂ decreased from about 95 to 75% by addition of O₂, while no reaction occurred between CH₄ and O₂ over Fe-ZSM-5, as shown in Table 4. For these reasons, it is presumed that the active CH₂^{*}s species may react partially with O₂ to produce CO₂ and H₂O. Nobukawa et al. [17,18] has reported that the reaction intermediates of methoxy and formate species were observed over Fe-BEA during the SCR of

[Initial stage]	
$N_2O + s \rightarrow N_2 + Os$	(2)
$[CH_4 is employed]$	
$Os + CH_4 \rightarrow CH_2^* s + H_2O$	(3)
$CH_2^*s + N_2O \rightarrow CH_2Os + N_2$	(4)
$CH_2^*s + 3/2O_2 \rightarrow CO_2 + H_2O_2$	(5)
$CH_2Os + 2N_2O \rightarrow 2N_2 + CO_2 + H_2O + s$	(6)
$CH_2Os + O_2 \rightarrow CO_2 + H_2O + s$	(7)
$[C_2H_4 \text{ is employed}]$	
$Os + C_2H_4 \rightarrow (CH)_2^*s + H_2O$	(8)
$(CH)_2^* s + 2N_2O \rightarrow (CHO)_2 s + 2N_2$	(9)
$(CH)_2^* s + 5/2O_2 \rightarrow 2CO_2 + H_2O$	(10)
$(CHO)_2$ s + N ₂ O \rightarrow N ₂ + CO ₂ + H ₂ O + Cs	(11)
$(CHO)_2 s + 3/2O_2 \rightarrow 2CO_2 + H_2O + s$	(12)
$[C_3H_6 \text{ is employed}]$	
$Os + C_3H_6 \rightarrow (CH_8)_3 s + H_2O$	(13)
$(CH_8)_3^*$ s + 3N ₂ O \rightarrow $(CH_8O)_3$ s + 3N ₂	(14)
$(CH_8)_3$ *s + 4O ₂ \rightarrow 3CO ₂ + 2H ₂ O	(15)
$(CH_{s}O)_{3}s + N_{2}O \rightarrow N_{2} + CO_{2} + 2H_{2}O + C_{2}s$	(16)
$(CH_{\delta}O)_{3}s + 5/2O_{2} \rightarrow 3CO_{2} + 2H_{2}O + s$	(17)
(δ ≒ 1.3)	3 F.

Scheme 1. Reaction scheme for N2O reduction by various hydrocarbons.

 N_2O with CH₄. They observed by FT-IR experiments that the Fe-OH species is present on the Fe-BEA catalyst during the SCR of N_2O with CH₄ and it plays an important role in the reaction. In a similar manner to this, the oxygenated intermediate species, CH₂Os, further reacted with N_2O or O_2 to produce N_2 , CO, H₂O, Eq. (6) and (7). Gaseous or adsorbed CO may be oxidized consecutively with Os or N_2O to CO₂ (Fig. 7, Table 4). In this case, CH₄ itself is scarcely oxidized with gaseous O₂ (Table 3).

When C_2H_4 is employed, a little amount of C_2H_4 is adsorbed on the catalyst without oxidant. Os, active nascent oxygen, reacts with gaseous or adsorbed C_2H_4 to produce (CHO)₂s, carbonaceous deposit precursor, H₂O and N₂, through very active hydrocarbon adsorbed species, (CH)₂*s, Eqs. (8) and (9). (CHO)₂s may react with N₂O to produce N₂, CO, H₂O and carbonaceous adsorbed species, Cs, which may further accumulate as C α in the absence of O₂, Eq. (11), while (CHO)₂s reacts with O₂ above the stoichiometric composition and an active site (s) is regenerated, Eq. (12) (Fig. 1, Table 1). The reaction scheme for C₂H₆ and C₃H₈ could be represented phenomenologically in a similar manner to C₂H₄.

On the other hand, the influence of O_2 is significantly different between C_3H_6 and the other hydrocarbons (Fig. 1). C_3H_6 is adsorbed readily on Fe-ZSM-5 without oxidants and C α with one-half of the saturated value accumulated (Table 1). Furthermore, significant amounts of C β were formed on Fe-ZSM-5 during N₂O reduction by C_3H_6 even in the presence of O₂ (Table 1) as well as the reaction between C_3H_6 and O₂ (Table 3). Yamada et al. [12] suggested on the basis of the observations of FT-IR spectroscopy that the bands attributed to CH₂ group, CH₃ group, and hydrocarbon oligomers are obtained by the adsorption of C_3H_6 and SCR of N₂O by C_3H_6 occurs mainly on Lewis acid sites generated by the ion-exchange. It can be presumed that significant amounts of C β are formed during the oxidation of the adsorbed propylene species with O_2 . When C_3H_6 is employed for reductant, Os reacts with C3H6 to produce $(CH_{\delta}O)_{3}s$, H₂O and N₂, through very active hydrocarbon adsorbed species, $(CH_{\delta})_3^*$ s, Eqs. (13) and (14), where, δ is calculated at 4/3 = 1.33. In fact, Kameoka et al. [15] reported that carbon-, hydrocarbon- and/or oxygen containing species such as $C_x H_v(a)$ and $C_x H_v O_z(a)$ are produced on the Fe-ZSM-5 surface by the reaction of the $N_2O-O_2-C_3H_6$ mixture and the average composition ratio of $C_x H_y(a)$ and $C_x H_y O_z(a)$ on the Fe ion site is roughly estimated to be $FeC_3H_4O_3$. Then, $(CH_{\delta}O)_{3}$ s may react with N₂O to produce N₂, CO, H₂O, and carbonaceous species, and carbonaceous species, C2s, which may further accumulate as $C\alpha$ in the absence of O₂, Eq. (16). In the presence of O₂, $(CH_{\delta}O)_{3S}$ partially reacts with O₂ to produce CO₂, H₂O and an active site (s), Eq. (17), while considerable amount of O_2 need to promote Eq. (17), and thus carbonaceous species may remain as CB.

On the basis of the findings from XPS as described in Section 3.3, the chemical nature of $C\alpha$ obtained from C_3H_6 and C_2H_4 may be similar, while that of $C\beta$ is significantly different and $C\beta$ from C_3H_6 can be regarded as carbide rich carbonaceous species. The reactivity of $C\beta$ with O_2 should be different and this may be responsible for the difference in the effects of O_2 addition on the reduction of N_2O between C_3H_6 and C_2H_4 .

4. Conclusions

The nature and reactivity of carbonaceous deposits have been studied over Fe-ZSM-5 in the catalytic reduction of dinitrogen monoxide by various hydrocarbons (CH₄, C₂H₄, C₂H₆, C₃H₆, C₃H₈) in the absence and presence of O₂.

The hydrocarbon reductants used are phenomenologically divided into three groups, namely CH₄, C₃H₆, and others (C₂H₄, C₂H₆, C₃H₈), referred to as the C₂H₄ group. Two types of carbonaceous deposits (C α and C β) as classified by TPO are formed on the catalyst during the reduction of N₂O in the absence of O₂ irrespective of the kind of hydrocarbons used except for CH₄. The C α species is formed on Fe sites and the C β is mainly accumulated on the support.

In both cases of C_2H_4 and C_3H_6 , the catalytic activity of Fe-ZSM-5 decreases with an increase in the amount of $C\alpha$, while it is not affected by the presence of $C\beta$. The chemical nature and the amount of $C\alpha$ obtained from the C_2H_4 group and C_3H_6 is similar, while those of $C\beta$ is significantly different and $C\beta$ from C_3H_6 can be regarded as carbide rich carbonaceous species. The formation of $C\alpha$ is suppressed by the presence of O_2 , and this promotes the catalytic reduction of N_2O . The reactivity of $C\beta$ with O_2 should be different and this may be responsible for the difference in the effects of O_2 addition on the reduction of N_2O between the C_2H_4 group and C_3H_6 . In the case of CH₄, a stable high conversion of N_2O is obtained irrespective of the presence and absence of O_2 because the carbonaceous deposits are scarcely accumulated on the catalyst. It is concluded that CH₄ is the most effective reductant for the selective reduction of N_2O .

References

- [1] M. Kavanaugh, Atmospheric Environ. 21 (1987) 463.
- [2] Y. Li, J.N. Armor, Appl. Catal. B 1 (1991) 21.
- [3] T. Turek, Appl. Catal. B 9 (1996) 201.
- [4] F. Kapteijin, M. Marban, J. Rodriguez-Mirasol, J.A. Moulijn, J. Catal. 167 (1997) 256.
- [5] J.P. Ramírez, J. Overeijnder, F. Kapteijin, J.A. Moulijn, Appl. Catal. B 23 (1999) 59.
- [6] M. Shimokawabe, K. Hirano, N. Takezawa, Catal. Today 45 (1998) 117.
- [7] E.-M. El-Malki, R.A. van Santen, W.H.M. Sachtler, Micropor. Mesopor. Mater. 35/36 (2000) 235.
- [8] Y. Li, J.N. Armor, Appl. Catal. B 3 (1993) 55.
- [9] M. Kögel, V.H. Sandoval, W. Schwieger, A. Tissler, T. Turek, Catal. Lett. 51 (1998) 23.
- [10] C. Pophal, T. Yogo, K. Tanabe, K. Segawa, Catal. Lett. 44 (1997) 271.
- [11] C. Pophal, T. Yogo, K. Yamada, K. Segawa, Appl. Catal. B 16 (1998) 177.
- [12] K. Yamada, S. Kondo, K. Segawa, Micropor. Mesopor. Mater. 35/36 (2000) 227.
- [13] M. Shimokawabe, N. Takahata, T. Chaki, N. Takezawa, React. Kinet. Catal. Lett. 71 (2000) 313.
- [14] S. Kameoka, T. Suzuki, K. Yazaki, S. Tanaka, S. Ito, T. Miyadera, K. Kunimori, Chem. Commun. (2000) 745.

- [15] S. Kameoka, K. Yazaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera, K. Kunimori, Phys. Chem. Chem. Phys. 3 (2001) 256.
- [16] S. Kameoka, K. Kita, S. Tanaka, T. Nobukawa, S. Ito, K. Tomishige, T. Miyadera, K. Kunimori, Catal. Lett. 79 (2002) 63.
- [17] S. Kameoka, T. Nobukawa, S. Tanaka, S. Ito, K. Tomishige, K. Kunimori, Phys. Chem. Chem. Phys. 5 (2003) 3328.
- [18] T. Nobukawa, Y. Yoshida, S. Kameoka, S. Ito, K. Tomishige, K. Kunimori, J. Phys. Chem. 108 (2004) 4071.
- [19] Y. Yoshida, T. Nobukawa, S. Ito, K. Tomishige, K. Kunimori, J. Catal. 223 (2004) 454.
- [20] Q. Zhu, B.L. Mojet, R.A.J. Jonssen, E.J.M. Hensen, J. van Grondele, P.C.M.M. Magusin, R.A. van Santen, Catal. Lett. 81 (2002) 205.
- [21] Z.H. Zhu, G.Q. Lu, Dev. Chem. Eng. Min. Proc. 7 (1998) 563.
- [22] Z.H. Zhu, J. Finnerty, G.Q. Lu, R.T. Yang, J. Phys. Chem. B 105 (2001) 821.
- [23] C.P. Byrne, R.T. Yang, Z.H. Zhu, G.Q. Lu, J. Phys. Chem. B 106 (2002) 2592.
- [24] R.R. Sadhankar, D.T. Lynch, J. Catal. 149 (1994) 278.
- [25] V.D. Belyaev, T.I. Politova, V.A. Sobyanin, Catal. Lett. 57 (1999) 43.
- [26] J.H. Holles, M.A. Switzer, R.J. Davis, J. Catal. 190 (2000) 247.
- [27] B. Coq, M. Mauvezin, G. Delahay, S. Kieger, J. Catal. 195 (2000) 298.
- [28] B. Coq, M. Mauvezin, G. Delahay, J.-B. Butet, S. Kieger, Appl. Catal. B 27 (2000) 193.
- [29] Y. Li, J.N. Armor, Appl. Catal. B 3 (1994) 275.
- [30] G.I. Panov, V.I. Sobolev, A.S. Kharitonov, J. Mol. Catal. 61 (1990) 85.
- [31] J. Jia, B. Wen, W.M.H. Sachtler, J. Catal. 210 (2002) 453.
- [32] T. Chaki, M. Arai, T. Ebina, M. Shimokawabe, J. Catal. 218 (2003) 220.
- [33] N.M. Rodriguez, P.E. Anderson, A. Wootsch, U. Wild, R. Schlögl, Z. Paál, J. Catal. 197 (2001) 365.